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Introduction 
JETSTREAM, short for Jet and Turboprop Simulations for Trajectory-based Emissions and 
Meteorological Effects, is the ICCT’s aviation emissions model. It uses aircraft trajectories, 
meteorological data, and aircraft and engine performance models to estimate global emissions 
resulting from aircraft activity. It also utilizes a contrail process model to estimate the climate 
impact of contrail cirrus produced during flight. The results are then compared to reported 
emissions to validate the accuracy of the modeling process.  
 
This work serves as the model documentation for JETSTREAM. It begins by describing the 
datasets used, along with any cleaning steps taken to prepare the data for input into the 
models. It then describes the modeling steps taken to convert the data inputs into a 
comprehensive inventory of aviation’s CO2 and non-CO2 emissions. The results of the inventory 
are then compared to publicly available emissions reports and other similar modeling efforts.  

Overall Model Schematic 
JETSTREAM operates as a wrapper around the pycontrails aircraft emissions and contrails 
modeling software. Pycontrails uses: 

1. aircraft trajectories, defined as a time series of latitude, longitude, and altitude,  
2. aircraft type, defined by the International Civil Aviation Organization (ICAO) type 

designator,  
3. engine type, defined by an Engine unique identifier (UID) from the ICAO Engine 

Emissions Databank (EEDB), 
4. atmospheric conditions, defined as temperature, humidity, pressure, wind speeds, 

cloud cover, incoming short-wave radiation, and outgoing long-wave radiation, 
as input data for its aircraft performance, engine emissions, and contrail impact models. The 
results of the modeling are then validated against real-world data to test the quality of the 
modeling. The overall schematic is shown in Figure 1. 
 
The aircraft performance model utilizes aircraft trajectories, aircraft type information, and 
atmospheric conditions to calculate the fuel consumed at each point along the flight trajectory. 
The fuel burn estimates feed into the engine emissions model, which uses the engine type, its 
emissions certification results from the ICAO EEDB, and atmospheric conditions, to estimate 
the emission quantities of CO2, Nitrogen oxides (NOx), non-volatile particulate matter (nvPM), 
sulfur oxides (SOx), and water vapor. The emission quantities (specifically, nvPM and water 
vapor), along with engine, aircraft, and atmospheric data, are fed into the Contrail Cirrus 
Prediction (CoCiP) model, which simulates the entire lifetime of any contrail that may form and 
estimates the radiative forcing that it creates.   
 
The emission estimates are validated against available real-world datasets, such as country-
pair emissions reported to CORSIA and flight-specific fuel consumption data reported to Brazil’s 
ANAC (Agência Nacional de Aviação Civil). We also match the flight inventory with OAG’s annual 
flight scheduling data to obtain a more accurate estimate of emissions from commercial 
aviation. 

https://py.contrails.org/index.html
https://www.icao.int/publications/doc8643/pages/search.aspx
https://www.icao.int/publications/doc8643/pages/search.aspx


 
Figure 1 Schematic of the JETSTREAM modeling process 

Datasets 
Flight trajectory data 

Description 
Data provider: Spire 
 
Most aircraft broadcast their position in real-time to ground and satellite receivers through a 
technology called Automatic Dependent Surveillance-Broadcast (ADS-B).  
 

We use Spire's ADS-B database as our primary data source for flight trajectories. The dataset 
includes trajectory data for 62.0 million global flight movements. It consists of all flights that 
were equipped with ADS-B transmitters, captured by ground or satellite receivers. Each flight is 
identified by a unique 𝑓𝑙𝑖𝑔ℎ𝑡_𝑖𝑑 and has a trajectory associated metadata.  The description of 
the available fields is documented in the Spire API documentation.  
 
The trajectory files are stored in Azure Blob storage rather than in a database to save on storage 
costs. The delivered data has a custom adaptive downsample based on the duration of the 
flight. 

1. For flights less than 500 km in length, or with less than 45 minutes of airborne time, a 
sample rate of 15 seconds is used. 

2. For flights less than 1500 km in length, or with less than 1.5 hours of airborne time, a 
sample rate of 30 seconds is used. 

3. For all other flights, a sample rate of 1 min is used. 
The trajectory data is not perfect. While ADS-B transmitters onboard aircraft are constantly 
broadcasting their location, it is not always picked up by a receiver. This creates data gaps in 
areas where there are insufficient ADS-B receivers, such as over the ocean or in uninhabited 
places.  
 
 

https://aviation-docs.spire.com/api/flights-history/output


The metadata provides information about the airline, including arrival and departure airports, as 
well as the aircraft type, registration, and role. The metadata is stored in a database. The fields 
and their fill rates are shown in Figure 2. 𝑓𝑙𝑖𝑔ℎ𝑡_𝑖𝑑, 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑟𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛_𝑒𝑛𝑑, 
𝑖𝑐𝑎𝑜_𝑎𝑑𝑑𝑟𝑒𝑠𝑠, and 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 are the only fields with a 100% fill rate. Aircraft types are identified 
using a combination of 𝑖𝑐𝑎𝑜_𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑎𝑐_𝑡𝑦𝑝𝑒_𝑖𝑐𝑎𝑜, and 𝑎𝑐_𝑡𝑦𝑝𝑒_𝑛𝑎𝑚𝑒 (details in the Error! 
Reference source not found. section). The departure and arrival airports are determined based 
on a combination of 𝑑𝑒𝑝_𝑎𝑖𝑟𝑝𝑜𝑟𝑡_𝑖𝑐𝑎𝑜, 𝑎𝑟𝑟_𝑎𝑖𝑟𝑝𝑜𝑟𝑡_𝑖𝑐𝑎𝑜, 𝑑𝑒𝑝_𝑎𝑖𝑟𝑝𝑜𝑟𝑡_𝑖𝑎𝑡𝑎, and 
𝑎𝑟𝑟_𝑎𝑖𝑟𝑝𝑜𝑟𝑡_𝑖𝑐𝑎𝑜 (details in the Airport data section). There are additional airport code 
variables with the 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟_ and 𝑠𝑝𝑖𝑟𝑒_ prefixes. These fields distinguish between the airport 
codes supplied by Spire’s data provider and those detected by Spire themselves. We use the 
airport code variables without the prefix, as these are the most complete. The airline 
information is not used in the emissions modeling, but is used in combining the Spire trajectory 
data and the OAG flight schedule data. The airline is determined based on a combination of 
𝑎𝑖𝑟𝑙𝑖𝑛𝑒_𝑖𝑎𝑡𝑎 and 𝑎𝑖𝑟𝑙𝑖𝑛𝑒_𝑛𝑎𝑚𝑒.  
 

 
Figure 2 Data fill rate for the flight trajectory metadata 

The metadata is not perfect, and conflicting information needs to be resolved. Additionally, 
mapping between ICAO codes and IATA codes for aircraft and airports is challenging as there 
can be a many-to-many mapping relationship between the IATA and ICAO codes. These 
discrepancies need to be resolved because the aircraft performance models utilize ICAO codes 
for aircraft types, whereas the schedule data from OAG uses IATA codes for the same types. 
Similarly, OAG uses IATA codes for airports. However, for modeling purposes, we use airport 
ICAO codes as there are far more airports with assigned ICAO codes than those with assigned 
IATA codes.  
 
The following sections outline the data cleaning processes undertaken prior to running the 
simulations.  

Preprocessing Trajectories 
The trajectory preprocessing happens in two steps:  

• Initial trajectory classification and interpolation/extrapolation.  



• Secondary trajectory cleaning to correct unrealistic trajectories. 
 

Initial trajectory classification and completion 
The trajectories are classified as:  

1. FULL: Starting and ending points are below 3000 ft, and the time between successive 
waypoints is always less than 15 minutes 

2. INTR: Some interpolation is required when there is a gap of more than 15 minutes 
between two points, but the starting and ending points are below 3000 ft.  

3. EXTR: Extrapolation is required when the starting or ending points are above 3000 ft, 
indicating that receivers did not capture the arrival or takeoff. If the metadata has arrival 
and departure airport information, we use it to extrapolate the trajectory based on 
scheduled departure or arrival time.  

4. INCP: Trajectory remains incomplete if it is not possible to extrapolate to complete the 
trajectory. This occurs when extrapolation is required, but there isn’t any information 
about the departure or arrival airport.  

5. BELOW3K:  Flights are airborne but remain below 3,000 feet. These flights are not 
modeled using an aircraft performance model because we use the ICAO default 
Landing and Takeoff (LTO) cycle, which extends from the ground to 3,000 feet.  

6. RCJT: Flights are rejected because they have fewer than 3 waypoints or were never 
airborne. 

Table 1 lists the results of the classification for all 62 million flights. Roughly half the trajectories 
are complete and do not require any interpolation or extrapolation. About 12% of flights never 
reach above 3,000 feet. These flights are likely general aviation flights, incomplete trajectories, 
or aborted flights. They are not included in the set of flights that are modeled. The 10% of 
trajectories classified as INTR are interpolated using functions implemented in pycontrails, 
where they include step climbs when necessary. 16% of flights can successfully be 
extrapolated to their origin or destination airports, and this is also done using native pycontrails 
functions. 11% of flights remain incomplete. 0.7% of flights are rejected due to having fewer 
than 3 waypoints or never being airborne. Flights classified as FULL, INTR, EXTR, and INCP, 
totaling 87% of the global flight dataset can be modeled.  
 
Table 1 Results of the trajectory classification 

Classification % of all flights 

FULL 50.76% 

BELOW3K 11.92% 

INTR 9.61% 

EXTR 16.18% 

INCP 10.86% 

RJCT 0.67% 

 

https://github.com/contrailcirrus/pycontrails/blob/898f5341265a390e19f54404567f7af33e04bd10/pycontrails/core/flight.py#L1696


Secondary trajectory cleaning 
The extrapolation of flights purely based on the arrival and departure airports created 
unrealistic flight trajectories that required further processing. The unrealistic trajectories were 
primarily created due to incorrect airports in the metadata or an issue with the implementation 
of step-climbs in pycontrails. The following cleaning was only done for extrapolated 
trajectories. 
 

1. Problems due to incorrect metadata: Determining if the metadata is incorrect 
required comparing the extrapolated trajectories and the raw trajectory. If the raw 
trajectory shows the aircraft is already in its climb (descent) phase at the start (end) of 
the raw trajectory,1 the extrapolated trajectory should be short. However, if the 
extrapolated trajectory has a first (last) waypoint that is greater than 130 km away or 
greater than 20 minutes before (later), we consider the departure (arrival) airport to be 
incorrect in the metadata. In this case, we extrapolate backwards (forwards) in time 
from the first (last) three raw waypoints using the calculated direction of travel, rate of 
climb, and speed, until the aircraft is at or below 3,000 feet in altitude. We then find the 
closest airport from this new extrapolated trajectory and use it to replace the incorrect 
departure (arrival) airport metadata.  

2. Problems due to implementation of step-up climbs: If the aircraft is in the cruise 
phase at the beginning of the raw trajectory and requires extrapolating more than 2 
hours back in time to a departure airport, the default altitude interpolation in pycontrails 
would place the climb in the middle of the extrapolated segment.2 To correct this, we 
place one waypoint at the departure airport and one waypoint at cruise altitude near the 
departure airport. For the location and time of the intermediate waypoint, we simulate a 
nominal climb out from the departure airport. The waypoint is placed at cruise altitude 
between the airport and the first raw waypoint. We use a nominal rate of climb of 12.7 
m/s, a nominal ground speed of 130 m/s, to set the latitude, longitude, and time of the 
intermediate waypoint. The trajectory is then interpolated between these waypoints and 
the first raw waypoint to give a realistic trajectory.  

3. Trajectory rejections: We also rejected extrapolated trajectories where most of the 
trajectory was extrapolated. If the raw trajectory is less than 10% of the full extrapolated 
trajectory, either in time or distance, the trajectory is rejected. Trajectories that were 
longer than 20 hours after the secondary cleaning are also rejected.  

4. Unrealistic flight speeds: A final test for unrealistic speeds is carried out. Flight speeds 
are considered unrealistic if:  

a. waypoints above 10,000 feet have a speed lower than 70 m/s or greater than 350 
m/s, or 

b. waypoints above 10,000 feet have a rate of climb/descent greater than 5,000 ft 
/min 

c. waypoints below 10,000 feet have a speed higher 300 m/s 
In all three cases, the waypoints with unrealistic speeds are removed and the trajectory 
is interpolated again. If unrealistic speeds persist, the process is repeated until there 
are no more unrealistic speeds, or the trajectory ends up with fewer than 3 waypoint 
which leads to its rejection. 

The resulting set of trajectories are considered processed and are used in the analysis.  

 
1 An aircraft is classified as climbing (descending) at the beginning (end) of the raw trajectory if the first 
(last) three waypoints show an average rate of climb (descent) greater than 6.35 m/s (1250 ft/min) and the 
altitude of the first (last) waypoint is less than 75% of the altitude range of all raw waypoints for the flight. 
2 This behavior is to simulate stepped climbs when an aircraft is out of ADS-B range for greater than 2 
hours, typically over the ocean, and is at a higher altitude at the end than it was at the beginning of the 
data gap. 

https://github.com/contrailcirrus/pycontrails/blob/898f5341265a390e19f54404567f7af33e04bd10/pycontrails/core/flight.py#L1696
https://github.com/contrailcirrus/pycontrails/blob/898f5341265a390e19f54404567f7af33e04bd10/pycontrails/core/flight.py#L1696


Aircraft type information 
The metadata contains conflicting aircraft type names and codes. Aircraft types are 
preferentially identified by 𝑡𝑦𝑝𝑒_𝑛𝑎𝑚𝑒, not 𝑎𝑐_𝑖𝑐𝑎𝑜_𝑐𝑜𝑑𝑒, because type names generally offer 
more information. For example, the 𝑡𝑦𝑝𝑒_𝑛𝑎𝑚𝑒 may include terms such as ‘winglets’ or 
‘freighter’ that differentiate between the aircraft variants. ICAO codes do not capture such 
details. To improve data quality and furnish as much data as possible for modeling exercises, 
we perform the following data cleaning steps: 

1. Clean up type names (e.g., {“A320-200N”, “Airbus A320-200N”} → “Airbus A320-200N”) 
2. Assign ICAO type codes based on resemblance of the 𝑡𝑦𝑝𝑒_𝑛𝑎𝑚𝑒 to ICAO reference 

data. 
3. Harmonize type names for individual aircraft since some aircraft have partially missing 

or conflicting type names. 
4. Assign an ICAO type code that is supported by Base of Aircraft Data (BADA) aircraft 

performance model.  

Each step is elaborated upon in the next few subsections. 

Clean up type names 
Aircraft type name cleaning focuses on three issues: 

1. If multiple names were identical when ignoring case (e.g., “Cessna 172M Skyhawk” and 
“Cessna 172m Skyhawk”), the name was set to the more common one according to the 
number of flights. 

2. Various manufacturer names are sometimes abbreviated in the raw data and are 
consistently spelled out in the cleaned data (e.g., “B737-700” -> “Boeing 737-700”). 

3. Some types are labeled “Various <manufacuter> Airframes” (e.g., “Various Airbus 
Airframes”) or “Various <manufacturer and model> airframes” (e.g., “Various Airbus 
A320 Airframes”). Because the former can never uniquely identify an aircraft type, we 
set these entries to NULL. The latter can potentially identify a type, so we keep these 
values. We differentiate between the former and the latter by the presence of numbers 
in the type name (i.e., if the type name contains a number, we assume it contains model 
information). 

Assign ICAO codes 
The table below lists various data quality issues related to type names and type codes. 

group flights share 
1. Type name and code missing 4365427 7% 
2. Only type code missing 14527 0.02% 
3. Type name missing 401514 0.65% 
4. Multiple type codes per type name 12502605 20% 
5. No issues 44713929 72% 

For modeling purposes, we fill as many type codes as possible. To do so, we compare the Spire 
data with ICAO reference data and make the following assumptions: 

1. If the Spire type name and Spire type code resemble ICAO type names and type codes, 
we assume the name and code is correct. 

https://www2023.icao.int/publications/DOC8643/Pages/Search.aspx


2. If the Spire type name resembles an ICAO type name but the type codes disagree, we 
assume that the Spire type code is incorrect and set it to the ICAO type code. 

3. If the Spire type name resembles an ICAO type name and the Spire type code is missing, 
we assume the Spire type code is incorrect and assign the type code from the ICAO 
data. 

4. If the Spire type name is missing but the type code is valid, we assume the Spire type 
code is correct. 

The assumptions use the term “resemble” because Spire type names rarely match ICAO type 
names. Whether two names resemble each other was determined using Ratcliff/Obershelp 
pattern recognition with manual corrections in case of conflicting data.  

The assumptions are encoded in the following decision tree. 

 

Harmonize types for individual aircraft 
In the raw data, one aircraft can be associated with multiple type names and ICAO codes over 
time. An individual aircraft is identified by their 24-bit ICAO address associated with their ADS-B 
transponder. The following table looks at the number of type names and type codes per 
individual aircraft. 63% of aircraft have no type information and so cannot be modeled, but this 
accounts for only 4% of flights in the dataset.  

Group Aircraft Flights Aircraft Share Flight Share 
One type name 181512 51080966 27% 82% 
At least one type name 46224 6924777 7% 11% 
At least one type code 20607 1679860 3% 3% 
No type name or code 430716 2312399 63% 4% 

For modeling purposes, we harmonize type names and codes per aircraft, primarily to fill as 
many values as possible. To do so, we make the following assumptions: 

1. Each aircraft is uniquely identified by one ICAO address 
2. Each aircraft is best described by the most common (in terms of number of flights) type 

name associated with it. 
3. In the absence of a type name, each aircraft is best described by the most common (in 

terms of number of flights) ICAO code associated with it. 
4. Each type name is associated with one and only one ICAO code. 
5. In the absence of both type name and code, we do not have enough information to 

model the flight. 

https://en.wikipedia.org/wiki/Gestalt_pattern_matching
https://en.wikipedia.org/wiki/Gestalt_pattern_matching


These assumptions are encoded in the following decision tree. 

 
The table below shows the impact of harmonizing ICAO type codes per aircraft in terms of the 
number of flights that have been assigned an ICAO code before/after this correction. At the end 
of the process 96% of flights have a valid ICAO type code with each aircraft associated with one 
unique ICAO type code.  

group flights share 
before 57632284 93% 
after 59684770 96% 

 

Defining Commercial Aviation 
We define commercial aviation as flights that transport passengers, cargo, or mail in exchange 
for payment. However, ADS-B data offers no clear way to identify commercial vs. non-
commercial flights. It is easier to identify non-commercial flights using heuristics based on 
aircraft types, aircraft engines etc. So, we use heuristics outlined below to categorize flights as 
non-commercial aviation. All other flights considered commercial aviation. The following 
aircraft are categorized as non-commercial flights: 
 

1. Aircraft types that have piston engines.  
2. Aircraft types that have special designators. 
3. Aircraft types that are solely used as business jets. Aircraft types are listed in Appendix 

D of Sitompul and Rutherford, 2025) 
4. Aircraft with non-commercial aircraft roles as defined by the 𝑎𝑐_𝑡𝑦𝑝𝑒 field from Spire 

(e.g., ambulance, hospital, military, … ) 
5. If none of the preceding information is available, the commercial status is unknown 

(NULL). This occurs when the type code, type name, and aircraft role are missing 
After filtering out non-commercial flights, 37.4 million flights remain in the dataset for further 
analysis. The decision logic is plotted in the following decision tree 

https://www2023.icao.int/publications/DOC8643/Pages/SpecialDesignators.aspx
https://theicct.org/publication/air-and-ghg-pollution-from-private-jets-2023-jun25/


 
 
 

Meteorological data 

Description 
Data provider: European Centre for Medium-Range Weather Forecasts (ECMWF) 
Modeling aircraft fuel use, estimating aircraft performance, and simulating contrail lifetimes 
require information about the atmosphere in the vicinity of the flight.  
 
The European Centre for Medium-Range Weather Forecasts (ECMWF) provides global 
meteorological data in the form of its ERA5 HRES data product (cite) (Hersbach et al., 2020). 
This can be freely downloaded from the ECMWF Copernicus Climate Data Store. The data is 
downloaded at longitude–latitude grid resolution of 0.25° × 0.25° over 37 pressure levels (sea 
level to 42,000 ft above sea level) and at a 1-hour time resolution.  

Preprocessing 
A key variable in determining the formation and lifetime of a contrail is the relative humidity with 
respect to ice (RHi) of the atmosphere. ERA5 has been shown to overestimate the RHi with 
respect to radiosonde data (cite Agarwal 2022) and underestimate it when compared to in-situ 
measurements taken by aircraft part of the In-Service Aircraft for a Global Observing System 
(IAGOS) fleet (cite). In addition, ERA5 data rarely captures the high-supersaturation (RHi > 120%) 
that the in-situ sensors measure. Thus, a correction to the RHi field is required to make it more 
closely resemble real world data. We use a correction developed by Teoh et al., 2024 that 
changes ERA5 data such that the probability density of the RHi more closely resembles that 
seen by the IAGOS aircraft.  
 

Airport data 

Description 
Data provider: OurAirports  
We considered multiple sources for airport master data. The ICAO API was identified as the 
ideal source as it is one of the industry standards, but it was deemed prohibitively expensive. In 
the absence of authoritative data, OurAirports was identified as the next best data source 
because: 

https://acp.copernicus.org/articles/24/6071/2024/


• All required attributes (ICAO code, IATA code, name, country, coordinates) are included, 
plus they include nice-to-have information (e.g., Wikipedia URL and website URL). 

• OurAirports publishes daily updates dating back to November 2021 in their GitHub 
repository, meaning that we have access to regular snapshots and can track changes 
over time. 

• The dataset is free and open. 
• Their coverage of airports was better than competitors (e.g., IP2Location). 
• The Python library for modeling contrails pycontrails also uses OurAirports. 

Preprocessing 
A key challenge with OurAirports is that the data is essentially crowdsourced and not 
authoritative. Users can add to and edit airport data, which means that data quality and 
coverage generally improve over time. It is therefore difficult to differentiate between 
corrections in the data and genuine changes in the underlying airports. This distinction is 
important because airport codes, names, locations, etc. can change over time, and we require 
accurate historical data for our analyses. 
 
We store monthly snapshots of OurAirports data dating back to November 2021. OurAirports 
assigns a unique identifier to each airport. This identifier is used to track changes over time. 
Cleaning all historical data would be prohibitively time consuming. Instead, we generally regard 
each airport’s latest record as accurate and flag if historical values agree or disagree with the 
latest value. We undertake basic cleaning of countries, IATA codes, and ICAO codes where we 
resolve conflicting data entries, cases where the same code is associated with multiple 
airports, and cases where the same airport is associated with multiple codes. These cleaning 
processes do not affect the emissions modeling but can affect the attribution of emissions to 
countries.  
 

Airline fleet and engine data 

Description 
Data provider: Spire, IBA, ICAO Engine Emissions Databank (EEDB), European Environment 
Agency (EEA), United States Environmental Protection Agency (US EPA), Swiss Federal Office of 
Civil Aviation (FOCA) 
 

1. Spire 
The Spire data provides flight-level information, including aircraft registration and type. 
By using this information, we can identify the aircraft engine type by cross-referencing 
with the IBA dataset. 

 
2. IBA 

The IBA data provides information on registered aircraft fleets for each airline, including 
engine types. To merge this with the Spire data, we use the 'aircraft model' and 'tail 
number' columns. This allows us to determine the engine type associated with each 
specific flight. 

 
3. ICAO EEDB 

The ICAO Engine Emissions Databank (ICAO EEDB) is used for gaseous emissions, 
smoke, and nvPM emissions certification measurements for turbofan engines. To merge 
EEDB with flight-level engine data, we use the 'Engine Identification' column, and the 
'Engine UID' serves to link each engine to its unique emissions testing results.  



 
4. EEA 

For turboprop and piston engines, the EEA’s aviation emissions inventory was used to 
match aircraft types with the relevant LTO and cruise phase emissions for NOx, CO, SOx, 
and water vapor.  

 
6. US EPA  

For turboprop and piston engines that were not available within the EEA dataset, 
constant values for nvPM emissions were used from the US EPA air quality manual (cite 
EPA 2020). 
 

7. Swiss FOCA 
For piston engines that were not available in the EEA dataset, default values from the 
Swiss FOCA Aircraft Piston Engines Summary Report (cite FOCA 2007). 

 
Details of the cruise and LTO emissions modeling is provided in the Cruise emissions modeling 
and Landing and takeoff emissions modeling sections.  

Preprocessing 
The process of assigning airline fleets and engine types begins with flight-level data from the 
Spire database. Using the 𝑡𝑎𝑖𝑙_𝑛𝑢𝑚 column from Spire, we merge it with the tail number column 
in the IBA database. However, since aircraft tail numbers can have special characters and 
spaces, not all aircraft tail numbers have a one-to-one match in the IBA data. We use the 
Ratcliff/Obershelp pattern recognition as implemented in the FuzzyWuzzy Python library to 
identify the closest matching aircraft types and improve the accuracy of the merger.  
 
For flights with duplicate aircraft registrations, we select the aircraft type with the highest 
similarity score, representing the closest character match. This step allows us to assign an 
engine type at the flight level. Finally, we merge this engine type with the EEDB to retrieve the 
corresponding Engine UID. 
 

 
 
The EEDB only covers jet engines and does not have any information about turboprop aircraft. 
Jet engines account for 52% of the entire trajectory dataset or 87% of commercial flights. Of the 
jet engine aircraft, we get exact matches on tail number for 93% of them and we can assign 

https://en.wikipedia.org/wiki/Gestalt_pattern_matching


specific engines UIDs to them. For the rest, a default engine is chosen. The default engines are 
stored in the pycontrails GitHub repository.  
 

Operational data 

Description 
Data provider: OAG, US DOT, ICAO, ch-aviation 
The OAG dataset provides flight schedule data for commercial flights. The dataset we use does 
not have per flight schedule data, rather it is grouped by departure airport (origin), arrival airport 
(destination), aircraft type, and airline with a frequency column that represents the number of 
annual flights for that combination. The OAG dataset forms the basis of our inventory by 
defining the airport pairs, airline, aircraft, and frequency of flights for 2023.  
 
From the US DOT, we use T100 data to get load factor information for flights arriving and 
departing the US. From ICAO we use the Traffic by Flight Stage (TFS) dataset to assign the 
passenger load factor and the weight of belly cargo to all international flights. We use airline-
specific load factors from ch-aviation as well.  

Preprocessing 
For US departing and arriving flights, the T100 dataset is used to assign a load factor and a 
weight of onboard freight and mail from T100 dataset to each flight’s departure airport, arrival 
airport, specific aircraft type ,and air carrier combination in OAG. The matching steps and 
granularity are as follows: 

- The OAG dataset is merged with the T100 dataset by the departure airport, arrival 
airport, T100 aircraft name and air carrier, to calculate the load factor for each 
combination. For unmatched flights, the table below shows the fallback matching 
combinations and granularities:  

Granularity Variables used for matching 
Exact match  Airport pair, aircraft type and carrier 
Fallback 1 Airport pair and carrier  
Fallback 2 Airport pair  

- The average weight of onboard freight and mail for the same route and aircraft class is 
assigned to all combinations that were not successfully matched. 
 

For international flights, the ICAO Traffic by Flight Stage (TFS) dataset is used to assign the 
passenger load factor and the weight of belly cargo to each flight’s departure city, arrival city, 
specific aircraft type, and air carrier combination in the OAG database. For combinations that 
were not matched, fallback data with different levels of granularity was used. Freighter and 
passenger flights were separated into two data frames for merging,  
The passenger flights: 

- Passenger count 
o The table below shows the various the variables used to match at each level: 

Granularity Variables used for matching 
Exact match  City pair, aircraft type and carrier 
Fallback 1 City pair, aircraft class 
Fallback 2 Distance bin, aircraft class 

 
o Air carrier average passenger load factors from Ch-aviation were used for all the 

unmatched combinations and a global fallback passenger load factor of 82.4% was 
used.  

https://github.com/contrailcirrus/pycontrails/blob/main/pycontrails/models/emissions/static/default-engine-uids.csv


o For non-US domestic flights that the ICAO dataset doesn’t cover, air carrier average 
load factors from Ch-aviation were used to calculate passenger payload and 
revenue passenger traffic. 

- Belly cargo 
o The belly cargo mass is calculated by attaining the cargo mass fraction (CMF) using 

the following formula: 
 

𝐶𝑀𝐹 =  
freight revenue traffic + mail revenue traffic

passenger revenue traffic +  freight revenue traffic + mail revenue traffic
 

 

𝐵𝑒𝑙𝑙𝑦 𝑐𝑎𝑟𝑔𝑜 𝑚𝑎𝑠𝑠 = 𝐶𝑀𝐹 ∗
 calculated passenger count ∗ 100𝑘𝑔 

1 − 𝐶𝑀𝐹
 

 
o The table below shows the variables used for each level 

Granularity Variables used for matching 
Exact match  City pair, aircraft type and carrier 
Fallback 1 City pair, aircraft class 
Fallback 2 Distance bin, aircraft class 

 
The dedicated freighters: 

- Annual total payload capacity and payload factor from the ICAO TFS freighter dataset is 
matched to the dedicated freighters in the OAG dataset using aircraft type and carrier. 
The table below shows the fallback matching and the variables used for matching at 
each stage: 

Granularity Variables used for matching 
Direct match  Aircraft type and carrier  
Fallback 1 Aircraft type 
Fallback 2 Single fallback 44% 

 
Schedule data from Spire was used for UPS and FedEx carriers, which the OAG dataset does not 
include. The frequency of each flight was determined by calculating the number of occurrences 
for each combination when grouping the datasets by the departure airport, arrival airport, 
carrier, and aircraft type. 
 
For non-US combinations, UPS and FedEx carrier combinations were selected from the ICAO 
dataset, and the median value of the average payload capacity and weight occupancy factor 
was calculated for the first round of merging based on aircraft type and carrier. For unmatched 
combinations, the median average payload capacity and weight occupancy factor was used. 
 
Similarly, for UPS and FedEX flights operating in the US, T100 dataset was used for payload 
factors. The T100 UPS and FedEx combinations were grouped by route, carrier, and aircraft type 
to calculate the median value of the average onboard freight and mail (tons). These values are 
used for any direct matches. For the unmatched combinations, the carrier and aircraft type 
median values were used. 

Models 
Aircraft performance model 
Model: BADA3 
 



BADA is a collection of aircraft performance models developed and maintained by 
EUROCONTROL. It provides standardized performance parameters and fuel consumption 
models (objective functions) for a broad range of commercial aircraft, enabling estimates of 
aircraft behavior across different operational scenarios. BADA 3 is one of the most widely used 
versions, but not the latest and most accurate. It combines aerodynamic data, thrust models, 
and phase-specific fuel consumption formulas to deliver performance simulations outputs 
across a variety of aircraft types. For the aircraft types that have not been modeled, they use 
synonym aircraft that are very similar in weight, performance and mission.  
 

Cruise emissions modeling 

CO2, SOx, and H2O emissions 
CO2, SOx, and H2O emissions are calculated using constant emission indices on the amount of 
fuel burned.  
 

Model Emission factors Percentage of 
commercial flights in 
the database 

Reference 

Constant 
emissions 
index 

3.84 kg kg−1 for CO2 

1.237 g kg−1 for H2O 
1.2 g kg−1 for SOx 

100% ICAO, 2022 
Wilkerson et al., 2011 
Lee et al. 2021 

 

NOx, HC, and CO emissions 
Model: Fuel Flow Method 2 
The Fuel Flow Method 2 is a way to adjust emissions data from the ICAO engine emissions 
database, which relies of ground testing of engines, to estimate NOx, HC, and CO emissions at 
altitude (cite).  
 
For any engines that are not represented in the ICAO Engine Emissions Database, we use 
constant emission factors to estimate emissions.  
  

Model Emission factors Percentage of 
flights in the 
database 

Reference 

Fuel Flow Method 2 Dependent on engine 
operating conditions 

87% DuBois and 
Paynter, 2006 

Constant emissions 
index 

15.14 g kg−1 for NOx 
3.61 g kg−1 for CO 
0.520 g kg−1 for HC 

13% Lee et al. 2021 

 
 

nvPM Emissions  
Model: T4/T2 method 
 
The T4/T2 method is used to estimate cruise nvPM emissions profiles, which interpolates EEDB 
nvPM certification points using the ratio of turbine-inlet temperature (T4) to compressor-inlet 

https://www.icao.int/environmental-protection/CORSIA/Documents/CORSIA_Eligible_Fuels/ICAO%20document%2005%20-%20Sustainability%20Criteria%20-%20November%202022.pdf
https://acp.copernicus.org/articles/10/6391/2010/acp-10-6391-2010.html
https://www.sciencedirect.com/science/article/pii/S1352231020305689
https://www.jstor.org/stable/44657657
https://www.jstor.org/stable/44657657
https://www.sciencedirect.com/science/article/pii/S1352231020305689


temperature (T2) (cite Teoh et al.). For any engines that are not represented within the EEDB, we 
use constant values for nvPM number and nvPM mass.  
 

Model Emission factors Percentage of 
flights in the 
database 

Reference 

T4/T2 method Dependent on engine 
operating conditions 

87% Teoh et al. 2022 

Constant 
emissions index 

0.088 g kg−1 for nvPM 
mass 
1015 kg -1 for nvPM number 

13% Stettler et al. 
2013 

 

Landing and takeoff emissions modeling  
Model: SCOPE11 and EPA 
Data:  

- Engine Emission Databank (Source link)  
- EUROCONTROL (Source link) 
- EPA  
- FOCA 

 
To model landing and takeoff (LTO) emissions, we use several datasets depending on the engine 
type. As shown in the figure below, each engine type has its own model and data source for LTO 
emission calculations. 
 

https://acp.copernicus.org/articles/22/10919/2022/
https://doi.org/10.1021/es401356v
https://doi.org/10.1021/es401356v
https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank
https://docs.google.com/spreadsheets/d/1popLJm-PBh8pyp8ijOiVrvRBJdrQ7MIW/edit?usp=sharing&ouid=111911098385341042106&rtpof=true&sd=true


 
 
 
The modeling hereby, discuss per engine type basis: 
 
1. Jet Engine 

 
For jet engine aircraft we use the EEDB to calculate the total LTO emission based on the engine 
type. The EEDB shares the fuel burn, CO, NOx, HC, and nvPM of several engine. Since the nvPM 
sheet only includes 130+ unique engines, there are several methods needed as a fallback as 
shown in the table below.  
 

Granularity Data Variable description  
Direct match  EEDB LTO emission Matching using Engine 

Identification  
Fallback 1 EEDB LTO emission Matching Engine Identification 

from the same family (different 
generation) 

Fallback 2 EEDB LTO emission Matching Engine Identification 
with the same range of thrust  

Fallback 3 EEDB Smoke Number Engine that contributes < 0.1% 
of flights and no match with 
direct match and fallback 1 

 
For fallback 3 we use the SCOPE11 method to calculate some engine (< 1% flights) using SN for 
engines that are not available at in the EEDB.  



 

SCOPE11 Method 
The SCOPE11 method uses non-volatile particulate matter (nvPM) emission data as input. 
Before CAEP10, only the particulate-related standard was based on the Smoke Number (SN). 
For some engines, nvPM emission data are not available in the Engine Emissions Data Bank 
(EEDB), so only SN measurements can be used to estimate nvPM emissions. In Step 0, 
calculations are performed sequentially, using the SN to derive nvPM concentration 
(CImass), which is then used to compute the nvPM emission index in terms of mass (EImass). 
To derive the nvPM concentration (CImass), the following equation is used: 

CImass  [
μg

m3] =  
648.4 ∗  e(0.0766 ∗ SN) 

1 +  e(1.099 ∗ (SN − 3.064))
  

The emission index (EI) is calculated by multiplying the concentration (CImass) by the 
volumetric flow rate Qmode (measured in m³/kg). The flow rate Qmode depends on the Air-to-Fuel 
Ratio (AFR) and the reference by-pass ratio β, given by: 

Qmode  (
m3

kg
) =  0.776 ∗  (AFR)  ∗  (1 +  β)  +  0.767 

The AFR at each of the four LTO points have been estimated by Wayson et all. As 106 at Idle, 
83 at Approach, 51 at Climb-Out and 45 at Take-Off. 
 
A correction factor kslm is used to adjust for measurement system losses. It depends on the 
reference by-pass ratio β and nvPM concentration (CImass), calculated as: 

kslm =  ln (
3.219 ∗  CImass  ∗  (1 +  β) +  312.5

CImass  ∗  (1 +  β)  +  42.6)
)  

The nvPM emission index by mass (EImass) is derived for each of the four LTO modes as: 

𝐸𝐼𝑚𝑎𝑠𝑠[
𝑚𝑔

𝑘𝑔
] = 𝐶𝐼𝑚𝑎𝑠𝑠  . 𝑄𝑚𝑜𝑑𝑒. 𝑘𝑠𝑙𝑚  

For the nvPM emission index by number (EInum), the mean particle size across all modes is 
used, with the number density calculated by: 

𝐸𝐼𝑛𝑢𝑚 [
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑘𝑔
] =  

𝐸𝐼𝑚𝑎𝑠𝑠

(
π
6  ∗  109  ∗  (

GMD
109 )3  ∗  e(4.5 ∗ (ln(1.8))2))

 

This method allows for a step-by-step derivation of EImass and EInum from the Smoke 
Number, enabling estimation of nvPM emissions for engines lacking direct nvPM emission 
data in the EEDB. 

 
After getting the nvPM of each engine LTO, to get the PM2.5 we calculate it using EPA procedure 
below: 
 

EPA Procedures for Emission Inventory Preparation 
 
To estimate the total PM2.5 emissions from each jet engine aircraft, we use EPA procedures 
to calculate using the time in mode for each of the four components of the LTO cycle can be 
found in the EPA Procedures for Emission Inventory Preparation document (Environmental 
Protection Agency, 1992):   

𝑓𝑢𝑒𝑙 𝑖𝑛 𝑚𝑜𝑑𝑒 [𝑘𝑔]= 𝑓𝑢𝑒𝑙 𝑓𝑙𝑜𝑤 [𝑘𝑔/𝑠] ∗ 𝑇𝐼𝑀 [𝑚𝑖𝑛] ∗ 60 𝑠/𝑚𝑖𝑛 
 

Table below shows the Time in Mode (TIM) for every mode of flights.  
 

Table. Time in mode assumed for air pollution modeling 

Mode TIM (m) 



T/O 0.7 mins 
Climb 2.2 mins 

Approach 4.0 mins 
Idle (Taxi) 26 mins 

Source: EPA, Procedures for Emission Inventory Preparation 
 
svPM emission results when fuel containing sulfur is combusted in an aircraft engine. It is 
directly proportional to the sulfur content of jet fuel. ICAO’s Air Quality manual suggests a 
conversion efficiency of 0.024 (m/m) of sulfur to vPM and sulfur content of 680 ppm (0.068% 
-- see ICAO Air Quality Manual Sec 3.8). Accordingly:   
 

𝐿𝑇𝑂 𝑠𝑣𝑃𝑀 [𝑚𝑔] = 0.024 × 0.068% × 𝐿𝑇𝑂 𝑓𝑢𝑒𝑙 [𝑘𝑔] × 1,000,000 𝑚𝑔/𝑘𝑔 x NE 
 

Where: 
LTO svPM = total svPM emissions during landing and take-off 
LTO fuel = total fuel during the Landing and Take Off  
NE = Number of engines on the aircraft 
 
ovPM emission occurs when unburnt hydrocarbons from the fuel adsorb onto a fine particle, 
adding to its mass. ovPM is largely untested across EEDB engines and so is calculated using 
the CFM56-2-C1 as a reference (see Sec. 3.9). It is assumed to be directly proportional to LTO 
fuel for all engines in the EEDB:   
 

𝐿𝑇𝑂 𝑜𝑣𝑃𝑀 [𝑚𝑔]= (4.6 × 𝑇𝑂 𝑓𝑢𝑒𝑙 [𝑘𝑔] + 3.8 × 𝐶𝑂 𝑓𝑢𝑒𝑙 [𝑘𝑔] + 4.5 × 𝐴𝑝𝑝 𝑓𝑢𝑒𝑙 [𝑘𝑔] + 
11.3 × 𝐼𝑑𝑙𝑒 𝑓𝑢𝑒𝑙 [𝑘𝑔]) × NE 

 
Where: 
LTO ovPM = total ovPM emissions during landing and take off  
TO fuel = kilograms of fuel burn during takeoff 
CO fuel = kilograms of fuel burn during climb out 
App fuel = kilograms of fuel burn during approach 
Idle fuel = kilograms of fuel burn during idle/taxi 
NE = Number of engines on the aircraft 
 
The equation to calculate the final PM2.5 value is as follow: 
 

𝑃𝑀2.5 [𝑔] = 𝑛𝑣𝑃𝑀[𝑔] + 𝑠𝑣𝑃𝑀 [𝑔] + 𝑜𝑣𝑃𝑀 [𝑔]  
 

Where: 
nvPM = represents non-volatile particulate matter, 
svPM = denotes sulfate particulate matter, and 
ovPM = refers to organic particulate matter. 

 
  

 
2. Turboprop and Piston 
 
We use the EEA emissions calculator to get the LTO emissions for each aircraft using the default 
ICAO value. The database does not include the PM2.5 value of turboprop engines, so we get the 
constant of 1.234 pounds per LTO that is taken from the EPA document (EPA, 1992 – Procedures 
for Emission Inventory Prep).  



 
For other flights with turboprop engine that aren’t available in the EEA dataset, we get the value 
constants from EPA document, 2020 National Emission Inventory: Aviation Component. The 
LTO fuel burn value is taken from the weighted mean of the LTO fuel burn value of all flights with 
turboprop engines that are available in the Eurocontrol database (80% of the total turboprop 
flights in the 2023 Spire inventory data).  
 
For other flights with piston engine that aren’t available in the EEA database, we get the value 
constants from Swiss Federal Office of Civil Aviation (FOCA) document (Aircraft Piston Engine 
Emissions Summary Report).   

 
With this all accounted, the final fallback constant is shown below: 

Engine Type Fuel LTO Cycle 
(kg)   

HC LTO Total 
mass (g) 

CO LTO Total 
Mass (g) 

NOx LTO 
Total mass 

(g) 

PM2.5 LTO 
Emission 

(mg) 
Piston 7.53 174 7327 24 521.46 
Turboprop 120.984 77.11 12759.54 72.57 

 

 
 
The resulting calculation using the Spire database: 
 

Engine 
Type 

Category # flights % of Engine 
Type 

Jet Same Engine Name 30,257,617 93.1% 

Equivalent Engine 2,038,781 6.3% 

SN Generated (<10,000 
flights per engine) 

187,633 
0.6% 

Turboprops Eurocontrol 4,974,220 80% 

Constant (EPA & ICAO) 1,232,112 20% 

 

Analysis of results 
Merging with airline schedule data 
ADS-B transmitters are placed on most aircraft, and there is no easy way to classify the flights 
as commercial or non-commercial. However, commercial flights are represented in flight 
scheduling data. We use OAG’s flight schedules as a database of commercial flights and map 
the results of the emissions inventory onto the OAG schedule to represent the emissions of 
commercial aviation. OAG schedules do not include operations from FedEx and UPS. For those 
operators, we rely purely on the trajectory data.  
 
The mapping between OAG and emissions inventory is not perfect, and there are multiple 
issues to solve 

1. The OAG data does not have each individual flight, rather, it is grouped by departure 
airport (origin), arrival airport (destination), aircraft type, and airline, with a frequency 



column that represents the number of flights for that combination. So, in matching with 
the emissions inventory, which is per-flight, multiple flights from the inventory must be 
merged onto each row of the OAG database.  

2. OAG data uses IATA codes for airports and aircraft while Spire (which is the basis of the 
emissions inventory) uses ICAO codes for airports and aircraft. There is a many-to-many 
relationship between the ICAO and IATA codes for aircraft. Not every airport has an ICAO 
code and not every airport has an IATA code.  

3. Since airport and airline information is not transmitted directly over ADS-B receivers, 
there can be flights that have trajectory information but do not have airport or airline 
information. 
 

These data issues necessitate the use of fallbacks to ensure that every entry in the OAG 
database can be associated with an appropriate fuel consumption.  We use 4 levels of matching 
for this. 
 

1. Level 1: Flights in the emissions inventory that have an exact match with rows in the 
OAG data on origin, destination, aircraft type and airline are associated with the 
corresponding rows. The number of flights from the emissions inventory that are 
matched may not correspond to the frequency number in the OAG data. To account for 
the discrepancy the emissions are scaled to the frequency reported in the OAG data. 
The unmatched OAG data is used at the next step. 

2. Level 2: For the remaining OAG data, flights in the emissions inventory that match on 
origin, destination, and aircraft type are used to calculate the emissions. The total 
emissions of all the matched flights are scaled to the frequency reported in the OAG 
data. The unmatched OAG data is used at the next step.  

3. Level 3: For the remaining OAG data, the aircraft type and the distance between the 
origin and destination airport is used to estimate the fuel burn. To do this calculation, all 
the previously matched emissions inventory data is used to model a linear relationship 
of fuel burn to distance for each aircraft type. This model is queried at the distance 
between the origin and destination airport to get emissions per flight. The emissions per 
flight are scaled by the frequency reported in the OAG data to get the total emissions. 
The only OAG data that remains unmatched are those that have aircraft types that are 
not represented in the emissions inventory. 

4. Level 4: For the remaining OAG data, we use the EEA emissions modeling tool. This tool 
uses the aircraft type and distance to provide an estimate for a flight’s emissions. These 
emission values are scaled by the frequency reported in OAG to get the total emissions. 

The table below shows the number of flights in the OAG data that were matched at each stage 
and the fuel burn total after each stage of matching.  
 

 Matching variables Number of flights 
matched (million) 

Fuel burn total (Mt) 

Level 1 Origin, destination, aircraft 
type, and airline 

28.6 (79%) 226.4 

Level 2 Origin, destination, and aircraft 
type 

31.8 (87 %) 242.9 

Level 3 Aircraft type 36.1 (99%) 269.2 
Level 4 No match; Fuel burn and 

emissions scaled by distance  
36.4 (100%) 269.3 

 



Validation of results 
We conduct flight-level and region pair-level validation of the JETSTREAM CO2 and fuel burn 
results coming from BADA3 against real-world datasets. In addition to flight-specific and region-
pair-specific comparisons, the bottom-up 2023 fuel usage estimate can be compared to the 
top-down estimate for fuel usage by commercial aviation from IATA. The total fuel usage as 
estimated by the JETSTREAM inventory, which has been projected onto commercial operations, 
is 269.3 Mt (88 billion gallons). This is 4.4% lower than IATA’s top-down estimates of 92 billion 
gallons.   

Flight-level comparisons to Brazilian airline emissions 
We validate JETSTREAM against 427,379 flights with reported fuel burn from Brazil’s Agência 
Nacional de Aviação Civil (ANAC) at the flight level. Matching between the ANAC dataset and 
JETSTREAM is performed by merging on route, aircraft, type, and departure/arrival time (within a 
20 minute window). ANAC data with fuel burn less than 100kg is discarded as misreported. On 
average, ANAC takeoff times lead Spire takeoff times by about 10 minutes and lag Spire landing 
times by about 5 minutes. We find ANAC fuel burn is highly correlated with JETSTREAM fuel burn 
(R2=0.95). The median of the error between the two datasets is 9.2%.  
 
The plot below plots each flight as an individual point on a plot where the x-axis is the fuel burn 
reported to ANAC and the y-axis is the estimated fuel burn from JETSTREAM. The red dashed line 
represents a slope of 1. The closer a point is to this red dashed line, the lower the error in the 
fuel burn estimate. Except for a few aircraft types, there is good agreement between the 
modeled fuel burn estimates from JETSTREAM and the reported fuel burn. Removing these 
aircraft from the validation dataset reduces the median of the per flight error from 9.2% to 8.0%.  

 

https://www.iata.org/en/iata-repository/publications/economic-reports/global-outlook-for-air-transport-december-2024/


For the total fuel burn estimate across all flights considered here, JETSTREAM overestimates it 
by 9.8% when considering all aircraft, and by 5.4% when the problematic aircraft are excluded.  
 

Region-pair comparisons to CORSIA reporting 
The CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation) is a global 
initiative by ICAO to track and reduce CO2 emissions. Data from CORSIA include a mixture of 
reported and modeled CO2 totals by region pairs for international aviation. The CO2 emissions 
reported to CORSIA are tank-to-wake using an emission factor of 3.16 kg of CO2 per kg of fuel 
use. We use the same emission factor to convert the mass of fuel burned calculated in the 
emissions inventory to a comparable CO2 emissions number. We use the JETSTREAM inventory 
that has been projected onto commercial operations schedules for this comparison.  
 
There are two data issues in this comparison. First, some CORSIA data is considered classified, 
so there are some underestimated or missing values at the region pair level; however, global 
reported international aviation CO2 values include the contribution from these classified CO2 
data. Second, the CORSIA regions definition are coarse and do not specify which airports are 
included in each region pair, so there is uncertainty in what airports—and what individual 
flights—are considered. We use region definitions from the OurAirports database and use our 
best knowledge of the choices CORSIA made about assigning disputed territories to regions.  
 
At the highest level, we compare the total CO2 emissions reported to CORSIA to the total 
emissions from all international flights in the JETSTREAM inventory. JETSTREAM underestimates 
the total emissions from international flights by 4.9%. States reported a total of 530 Mt of CO2 
emissions from international flights in 2023 whereas we calculate 505 Mt of CO2 emissions from 
international flights.  
 
We compare the 2023 CO2 CORSIA data against JETSTREAM by aligning region pair definitions 
from JETSTREAM to our best knowledge of the choices CORSIA made about disputed territories 
and by filtering to only international flights. CORSIA contains 8,952 unique state pairs. 901 state 
pairs had some data that was considered confidential, of which 779 pairs had no data at all, 
while the other 122 had some subset of their emissions available. The JETSTREAM dataset 
includes 5,658 unique state pairs with emissions information for each pair. There are 3,587 
state pairs that are represented in CORSIA, but not in the JETSTREAM inventory. Conversely, 
there are 554 state pairs that are represented in the JETSTREAM inventory but are either not in 
the CORSIA inventory or their data is completely confidential.  
 
When comparing at the region-pair level, we only use region pairs that are present in both 
datasets and have complete data (no confidential data) in CORSIA. The plot below shows each 
region pair on a plot where the x-axis is the CO2 emissions reported to CORSIA, while the y-axis 
is the emissions estimate from JETSTREAM. The plot on the left shows all region pairs, while the 
plot on the right zooms into region pairs with less than 2 Mt of CO2 emissions between them. 
The dashed line represents the 1:1 trend, which is the ideal result. Points further away from the 
dashed line have larger errors. The error is defined as the percentage difference between the 
JETSTREAM estimate and the CORSIA reported value. JETSTREAM tends to underestimate 
CORSIA, with a median error -3.7% across all region pairs.  
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